14 research outputs found

    On the dynamics of WKB wave functions whose phase are weak KAM solutions of H-J equation

    Full text link
    In the framework of toroidal Pseudodifferential operators on the flat torus Tn:=(R/2πZ)n\Bbb T^n := (\Bbb R / 2\pi \Bbb Z)^n we begin by proving the closure under composition for the class of Weyl operators Opℏw(b)\mathrm{Op}^w_\hbar(b) with simbols b∈Sm(Tn×Rn)b \in S^m (\mathbb{T}^n \times \mathbb{R}^n). Subsequently, we consider Opℏw(H)\mathrm{Op}^w_\hbar(H) when H=12∣η∣2+V(x)H=\frac{1}{2} |\eta|^2 + V(x) where V∈C∞(Tn;R)V \in C^\infty (\Bbb T^n;\Bbb R) and we exhibit the toroidal version of the equation for the Wigner transform of the solution of the Schr\"odinger equation. Moreover, we prove the convergence (in a weak sense) of the Wigner transform of the solution of the Schr\"odinger equation to the solution of the Liouville equation on Tn×Rn\Bbb T^n \times \Bbb R^n written in the measure sense. These results are applied to the study of some WKB type wave functions in the Sobolev space H1(Tn;C)H^{1} (\mathbb{T}^n; \Bbb C) with phase functions in the class of Lipschitz continuous weak KAM solutions (of positive and negative type) of the Hamilton-Jacobi equation 12∣P+∇xv±(P,x)∣2+V(x)=Hˉ(P)\frac{1}{2} |P+ \nabla_x v_\pm (P,x)|^2 + V(x) = \bar{H}(P) for P∈ℓZnP \in \ell \Bbb Z^n with ℓ>0\ell >0, and to the study of the backward and forward time propagation of the related Wigner measures supported on the graph of P+∇xv±P+ \nabla_x v_\pm

    Skew Carleson measures in strongly pseudoconvex domains

    Get PDF
    International audienceGiven a bounded strongly pseudoconvex domain D in C n with smooth boundary, we give a characterization through products of functions in weighted Bergman spaces of (λ, Îł)-skew Carleson measures on D, with λ > 0 and Îł > 1 − 1 n+1
    corecore